Biclique cryptanalysis using balanced complete bipartite subgraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

optimal orientations of subgraphs of complete bipartite graphs

for a graph g, let d(g) be the set of all strong orientations of g. the orientationnumber of g is min {d(d) |d belongs to d(g)}, where d(d) denotes the diameterof the digraph d. in this paper, we determine the orientation number for some subgraphs of complete bipartite graphs.

متن کامل

Eigensharp Graphs: Decomposition into Complete Bipartite Subgraphs

Let r(G) be the minimum number of complete bipartite subgraphs needed to partition the edges of G, and let r'G) be the larger of the number of positive and number of negative eigenvalues of G. It is known that T{G) > r(G); graphs with t(G) = r(G) are called eigensharp. Eigensharp graphs include graphs, trees, cycles Cn with n = 4 or n ^ 4k, prisms Cn\2K2 with n ^ 3fc, "twisted prisms" (also cal...

متن کامل

On Subgraphs of the Complete Bipartite Graph

G(n) denotes a graph of n vertices and G(n) denotes its complementary graph. In a complete graph every two distinct vertices are joined by an edge. Let C k (G(n)) denote the number of complete subgraphs of k vertices contained in G(n). Recently it was proved [1] that for every k 2 (n) (1) min C (G (n)) + Ck(G(n)) < k k, , ! 2 2 where the minimum is over all graphs G(n). It seems likely that (1)...

متن کامل

Covering Graphs with Few Complete Bipartite Subgraphs

We consider computational problems on covering graphs with bicliques (complete bipartite subgraphs). Given a graph and an integer k, the biclique cover problem asks whether the edge-set of the graph can be covered with at most k bicliques; the biclique partition problem is defined similarly with the additional condition that the bicliques are required to be mutually edge-disjoint. The biclique ...

متن کامل

On covering graphs by complete bipartite subgraphs

We prove that, if a graph with e edges contains m vertex-disjoint edges, then m/e complete bipartite subgraphs are necessary to cover all its edges. Similar lower bounds are also proved for fractional covers. For sparse graphs, this improves the well-known fooling set lower bound in communication complexity. We also formulate several open problems about covering problems for graphs whose soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Information Sciences

سال: 2016

ISSN: 1674-733X,1869-1919

DOI: 10.1007/s11432-016-5540-x